* 2.3 Symbolic Data all the previous worked down to basically numbers at the bottom we are now going to use arbitrary symbols ** 2.3.1 Quotation - quote :: the power over an object to manipulate it as a symbol if we want to construct the list (a b), we need more than just list (list a b) combines the values held by those variables quotation marks denote what somebody else might say #+BEGIN_SRC scheme (define a 1) (define b 2) (list a b) (list 'a 'b) (list a 'b) (car '(a b c)) (cdr '(a b c)) '() #+END_SRC with '() we can represent nil which never worked on my scheme anyway #+BEGIN_SRC scheme (define (memq item x) (cond ((null? x) false) ((eq? item (car x)) x) (else (memq item (cdr x))))) (memq 'paul '(john george paul ringo)) #+END_SRC ** 2.3.2 Example: Symbolic Differentiation #+BEGIN_SRC scheme (define (deriv exp var) (cond ((number? exp) 0) ((variable? exp) (if (same-variable? exp var) 1 0)) ((sum? exp) (make-sum (deriv (addend exp) var) (deriv (augend exp) var))) ((product? exp) (make-sum (make-product (multiplier exp) (deriv (multiplicand exp) var)) (make-product (deriv (multiplier exp) var) (multiplicand exp)))) (else (error "unknown expression type -- DERIV" exp)))) ;;;;;;;; to define below this magnificantly high abstration level ;;;;;;;;; (define (variable? x) (symbol? x)) (define (same-variable? v1 v2) (and (variable? v1) (variable? v2) (eq? v1 v2))) (define (make-sum a1 a2) (cond ((=number? a1 0) a2) ((=number? a2 0) a1) ((and (number? a1) (number? a2)) (+ a1 a2)) (else (list '+ a1 a2)))) (define (=number? exp num) (and (number? exp) (= exp num))) (define (make-product m1 m2) (cond ((or (=number? m1 0) (=number? m2 0)) 0) ((=number? m1 1) m2) ((=number? m2 1) m1) ((and (number? m1) (number? m2)) (* m1 m2)) (else (list '* m1 m2)))) (define (sum? x) (and (pair? x) (eq? (car x) '+))) (define (addend s) (cadr s)) (define (augend s) (caddr s)) (define (product? x) (and (pair? x) (eq? (car x) '*))) (define (multiplier p) (cadr p)) (define (multiplicand p) (caddr p)) (deriv '(* (* x y) (+ x 3)) 'x) #+END_SRC ** 2.3.3 Example: Representing Sets sets as unordered lists: #+BEGIN_SRC scheme (define (element-of-set? x set) (cond ((null? set) false) ((equal? x (car set)) true) (else (element-of-set? x (cdr set))))) (define (adjoin-set x set) (if (element-of-set? x set) set (cons x set))) (define (intersection-set set1 set2) (cond ((or (null? set1) (null? set2)) '()) ((element-of-set? (car set1) set2) (cons (car set1) (intersection-set (cdr set1) set2))) (else (intersection-set (cdr set1) set2)))) #+END_SRC sets as ordered lists: #+BEGIN_SRC scheme (define (element-of-set? x set) (cond ((null? set) false) ((= x (car set)) true) ((< x (car set)) false) (else (element-of-set? x (cdr set))))) #+END_SRC more quickly (efficiently): #+BEGIN_SRC scheme (define (intersection-set set1 set2) (if (or (null? set1) (null? set2)) '() (let ((x1 (car set1)) (x2 (car set2))) (cond ((= x1 x2) (cons x1 (intersection-set (cdr set1) (cdr set2)))) ((> x1 x2) (intersection-set (cdr set1) set2)) ((< x2 x1) (intersection-set set1 (cdr set2))))))) #+END_SRC sets as binary trees: #+BEGIN_SRC scheme (define (entry tree) (car tree)) (define (left-branch tree) (cadr tree)) (define (right-branch tree) (caddr tree)) (define (make-tree entry left right) (list entry left right)) (define (element-of-set? x set) (cond ((null? set) false) ((= x (entry set)) true) ((< x (entry set)) (element-of-set? x (left-branch set))) ((> x (entry set)) (element-of-set? x (right-branch set))))) (define (adjoin-set x set) (cond ((null? set) (make-tree x '() '())) ((< x (entry set)) (make-tree (entry set) (adjoin-set x (left-branch set)) (right-branch set))) ((> x (entry set)) (make-tree (entry set) (left-branch set) (adjoin-set x (right-branch set)))))) #+END_SRC