How many different ways can we make change for $10, given half-dollars, quarters, dimes, nickels, pennies?
the number of ways to change a using n types of coins is:
the number of ways to change a using all but the first coin type, plus
the number of ways to change (- a d) using all n coin types, d being the denomination of first coin type
(define (count-change amount)
(cc amount 5))
(define (cc amount kinds-of-coins)
(cond ((= amount 0) 1)
((or (< amount 0) (= kinds-of-coins 0)) 0)
(else (+ (cc amount
(- kinds-of-coins 1))
(cc (- amount (first-denomination kinds-of-coins))
kinds-of-coins)))))
(define (first-denomination kinds-of-coins)
(cond ((= kinds-of-coins 1) 1)
((= kinds-of-coins 2) 5)
((= kinds-of-coins 3) 10)
((= kinds-of-coins 4) 25)
((= kinds-of-coins 5) 50)))
(count-change 100)
292
there are many ways to test for primeness
(define (smallest-divisor n)
(find-divisor n 2))
(define (find-divisor n test-divisor)
(cond ((> (square test-divisor) n) n)
((divides? test-divisor n) test-divisor)
(else (find-divisor n (+ test-divisor 1)))))
(define (divides? a b)
(= (remainder b a) 0))
(define (prime? n)
(= n (smallest-divisor n)))
(prime? 13)
if n is prime and a is any positive int less than n then a to the n is congruent to a modulo n
numbers are congruent modulo n if they both have the same remainder when divided by n
(define (expmod base exp m)
(cond ((= exp 0) 1)
((even? exp)
(remainder (square (expmod base (/ exp 2) m))
m))
(else
(remainder (* base (expmod base (- exp 1) m))
m))))
(define (fermat-test n)
(define (try-it a)
(= (expmod a n n) a))
(try-it (+ 1 (random (- n 1)))))
(define (fast-prime? n times)
(cond ((= times 0) true)
((fermat-test n) (fast-prime? n (- times 1)))
(else false)))
(fast-prime? 6601 1)
the fermat test is a probabilistic algorithm, in that it gives you an answer that is likely to be correct but not guaranteed. the odds of fooling it however, are small.