Ver código fonte

2.3 symbolic data

jordyn 4 anos atrás
pai
commit
e7922f6b37
4 arquivos alterados com 364 adições e 0 exclusões
  1. 96 0
      2/3/jord/exercises.org
  2. 113 0
      2/3/jord/lecture.org
  3. 0 0
      2/3/jord/note
  4. 155 0
      2/3/jord/notes.org

+ 96 - 0
2/3/jord/exercises.org

@@ -0,0 +1,96 @@
+* Exercise 2.53
+
+#+BEGIN_SRC scheme
+  (list 'a 'b 'c)		;; (a b c)
+  (list (list 'george))	;; ((george))
+  (cdr '((x1 x2) (y1 y2))) ;; ((y1 y2))
+  (cadr '((x1 x2) (y1 y2))) ;; (y1 y2)
+  (pair? (car '(a short list))) ;; f
+  (memq 'red '((red shoes) (blue socks))) ;; ()
+  (memq 'red '(red shoes blue socks)) ;; (red shoes blue socks)
+#+END_SRC
+
+* Exercise 2.54
+#+BEGIN_SRC scheme
+  (define (myequal? one other)
+    (cond ((and (null? one) (null? other))
+	   true)
+	  ((eq? (car one) (car other))
+	   (myequal? (cdr one) (cdr other)))
+	  (else false)))
+
+  (myequal? '(guop ice) '(guop ice))
+  (myequal? '(a b (1 2) c) '(a b (1 2) c))
+#+END_SRC
+
+* Exercise 2.56
+#+BEGIN_SRC scheme
+  (define (deriv exp var)
+    (cond ((number? exp) 0)
+	  ((variable? exp)
+	   (if (same-variable? exp var) 1 0))
+	  ((sum? exp)
+	   (make-sum (deriv (addend exp) var)
+		     (deriv (augend exp) var)))
+	  ((product? exp)
+	   (make-sum
+	    (make-product (multiplier exp)
+			  (deriv (multiplicand exp) var))
+	    (make-product (deriv (multiplier exp) var)
+			  (multiplicand exp))))
+	  ((exponentiation? exp)
+	   (make-product
+	    (exponent exp)
+	    ;; in progress
+	    (make-exponent (base exp)
+			   (- n 1)
+			   (deriv (base exp) var))))
+	  (else
+	   (error "unknown expression type -- DERIV" exp))))
+
+  ;;;;;;;; to define below this magnificantly high abstration level ;;;;;;;;;
+
+  (define (variable? x) (symbol? x))
+  (define (same-variable? v1 v2)
+    (and (variable? v1) (variable? v2) (eq? v1 v2)))
+  (define (make-sum a1 a2)
+    (cond ((=number? a1 0) a2)
+	  ((=number? a2 0) a1)
+	  ((and (number? a1) (number? a2)) (+ a1 a2))
+	  (else
+	   (list '+ a1 a2))))
+  (define (=number? exp num)
+    (and (number? exp) (= exp num)))
+  (define (make-product m1 m2)
+    (cond ((or (=number? m1 0) (=number? m2 0)) 0)
+	  ((=number? m1 1) m2)
+	  ((=number? m2 1) m1)
+	  ((and (number? m1) (number? m2)) (* m1 m2))
+	  (else (list '* m1 m2))))
+  (define (sum? x)
+    (and (pair? x) (eq? (car x) '+)))
+  (define (addend s) (cadr s))
+  (define (augend s) (caddr s))
+  (define (product? x)
+    (and (pair? x) (eq? (car x) '*)))
+  (define (multiplier p) (cadr p))
+  (define (multiplicand p) (caddr p))
+
+  (deriv '(* (* x y) (+ x 3)) 'x)
+
+  ;;;;;;; to implement below the exercise ;;;;;;;
+#+END_SRC
+
+#+BEGIN_SRC scheme
+  (define (exponentiation? x)
+    (and (pair? x) (eq? (car x) '**)))
+  (define (base x) (cadr x))
+  (define (exponent x) (caddr x))
+  (define (make-exponentiation a1 a2)
+    (cond ((=number? a2 0) 1)
+	  ((=number? a2 1) a1)
+	  ((and (number? a1) (number? a2)) (* a1 (make-exponentiation a1 (- a2 1))))
+	  (else (list '** a1 a2))))
+
+  (make-exponentiation 2 6)
+#+END_SRC

+ 113 - 0
2/3/jord/lecture.org

@@ -0,0 +1,113 @@
+* Lecture 3B Symbolic Differentiation; Quotation
+https://youtu.be/bV87UzKMRtE
+(alleged) text section 2.2
+
+how to build robust systems:
+  insensitive to small changes
+  small changes in the problem require small changes in the solution
+  instead of solving a problem at every level of the solution,
+  solve class of problems, by neighborhoods
+  invent a language at that level of detail
+
+therefore,
+  small changes take small solutions
+  because at each level, there is a language to express alternate
+  solutions of the same type
+
+how to use imbeding of languages:
+
+#+BEGIN_SRC scheme
+  (define deriv
+    (λ (f)
+      (λ (x)
+	(/ (- (f (+ x dx))
+	      (f x))
+	   dx))))
+#+END_SRC
+
+this deriv is implemented in a specific way, the numerical approx
+it takes a procedure and returns as data a procedure
+
+data vs procedure is already confused, but not badly
+we want to confuse it very badly
+
+;;;;;;;;;;;;;
+
+derivatives and integrals are inverses of each other
+why is it so much easier to take deriv than to find integ?
+
+#+BEGIN_SRC scheme
+  (define (deriv exp var)
+    (cond ((constant? exp var) 0)
+	  ((same-var? exp var) 1)
+	  ((sum? exp)
+	   (make-sum (deriv (addend exp) var)
+		     (deriv (augmend exp) var)))
+	  ((product? exp)
+	   (make-sum (make-product (m1 exp) (deriv (m2 exp) var))
+		     (make-product (deriv (m1 exp) var) (m2 exp))))
+	  ;; ...
+	  ))
+#+END_SRC
+
+gjs: "any time we do anything complicated by recursion we presumably
+  need a case analysis. its the essential way to begin"
+
+gjs: its a good idea to define predicates? with a name ending with a ?
+  its a conventional interface for humans
+
+there's a lot of wishful thinking here
+
+#+BEGIN_SRC scheme
+  (define (constant? exp var)
+    (and (atom? exp)
+	 (not (eq? exp var))))
+  (define (same-var? exp var)
+    (and (atom? exp)
+	 (eq? exp var)))
+
+  (define (sum? exp)
+    (and (not (atom? exp))
+	 (eq? (car exp) '+)))
+
+  (define (make-sum a1 a2)
+    (list '+ a1 a2))
+  (define a1 cadr)
+  (define a2 caddr)
+  (define (product exp)
+    (and (not (atom? exp))
+	 (eq? (car exp) '*)))
+  (define (make-product m1 m2)
+    (list '* m1 m2))
+  (define m1 cadr)
+  (define m2 caddr)
+#+END_SRC
+
+--- break
+
+
+             deriv rules 
+````````````````````````````````````````
+ constant?    sum?   a1   a2    ...
+
+ same-var?    make-sum   ...
+
+````````````````````````````````````````
+   representation as list structure
+
+
+clean up the output:
+#+BEGIN_SRC scheme
+  (define (make-sum a1 a2)
+    (cond ((and (number? a1)
+		(number? a2))
+	   (+ a1 a2))
+	  ((and (number? a1) (= a1 0))
+	   a2)
+	  ((and (number? a2) (= a2 0))
+	   a1)
+	  (else (list '+ a1 a2))))
+#+END_SRC
+
+we've hit a line that gives us tremendous power
+we've bought our sledge hammer,,, careful!

+ 0 - 0
2/3/jord/note


+ 155 - 0
2/3/jord/notes.org

@@ -0,0 +1,155 @@
+* 2.3 Symbolic Data
+
+all the previous worked down to basically numbers at the bottom
+
+we are now going to use arbitrary symbols
+
+** 2.3.1 Quotation
+
+  - quote :: the power over an object to manipulate it as a symbol
+
+if we want to construct the list (a b), we need more than just list 
+(list a b) combines the values held by those variables
+
+quotation marks denote what somebody else might say
+
+#+BEGIN_SRC scheme
+  (define a 1)
+  (define b 2)
+  (list a b)
+  (list 'a 'b)
+  (list a 'b)
+  (car '(a b c))
+  (cdr '(a b c))
+  '()
+#+END_SRC
+
+with '() we can represent nil which never worked on my scheme anyway
+
+#+BEGIN_SRC scheme
+  (define (memq item x)
+    (cond ((null? x) false)
+	  ((eq? item (car x)) x)
+	  (else (memq item (cdr x)))))
+  (memq 'paul '(john george paul ringo))
+#+END_SRC
+
+** 2.3.2 Example: Symbolic Differentiation
+#+BEGIN_SRC scheme
+  (define (deriv exp var)
+    (cond ((number? exp) 0)
+	  ((variable? exp)
+	   (if (same-variable? exp var) 1 0))
+	  ((sum? exp)
+	   (make-sum (deriv (addend exp) var)
+		     (deriv (augend exp) var)))
+	  ((product? exp)
+	   (make-sum
+	    (make-product (multiplier exp)
+			  (deriv (multiplicand exp) var))
+	    (make-product (deriv (multiplier exp) var)
+			  (multiplicand exp))))
+	  (else
+	   (error "unknown expression type -- DERIV" exp))))
+
+  ;;;;;;;; to define below this magnificantly high abstration level ;;;;;;;;;
+
+  (define (variable? x) (symbol? x))
+  (define (same-variable? v1 v2)
+    (and (variable? v1) (variable? v2) (eq? v1 v2)))
+  (define (make-sum a1 a2)
+    (cond ((=number? a1 0) a2)
+	  ((=number? a2 0) a1)
+	  ((and (number? a1) (number? a2)) (+ a1 a2))
+	  (else
+	   (list '+ a1 a2))))
+  (define (=number? exp num)
+    (and (number? exp) (= exp num)))
+  (define (make-product m1 m2)
+    (cond ((or (=number? m1 0) (=number? m2 0)) 0)
+	  ((=number? m1 1) m2)
+	  ((=number? m2 1) m1)
+	  ((and (number? m1) (number? m2)) (* m1 m2))
+	  (else (list '* m1 m2))))
+  (define (sum? x)
+    (and (pair? x) (eq? (car x) '+)))
+  (define (addend s) (cadr s))
+  (define (augend s) (caddr s))
+  (define (product? x)
+    (and (pair? x) (eq? (car x) '*)))
+  (define (multiplier p) (cadr p))
+  (define (multiplicand p) (caddr p))
+
+  (deriv '(* (* x y) (+ x 3)) 'x)
+#+END_SRC
+
+** 2.3.3 Example: Representing Sets
+sets as unordered lists:
+#+BEGIN_SRC scheme
+  (define (element-of-set? x set)
+    (cond ((null? set) false)
+	  ((equal? x (car set)) true)
+	  (else (element-of-set? x (cdr set)))))
+  (define (adjoin-set x set)
+    (if (element-of-set? x set)
+	set
+	(cons x set)))
+  (define (intersection-set set1 set2)
+    (cond ((or (null? set1) (null? set2)) '())
+	  ((element-of-set? (car set1) set2)
+	   (cons (car set1)
+		 (intersection-set (cdr set1) set2)))
+	  (else (intersection-set (cdr set1) set2))))
+#+END_SRC
+
+sets as ordered lists:
+#+BEGIN_SRC scheme
+  (define (element-of-set? x set)
+    (cond ((null? set) false)
+	  ((= x (car set)) true)
+	  ((< x (car set)) false)
+	  (else (element-of-set? x (cdr set)))))
+#+END_SRC
+
+more quickly (efficiently):
+#+BEGIN_SRC scheme
+  (define (intersection-set set1 set2)
+    (if (or (null? set1) (null? set2))
+	'()
+	(let ((x1 (car set1)) (x2 (car set2)))
+	  (cond ((= x1 x2)
+		 (cons x1
+		       (intersection-set (cdr set1)
+					 (cdr set2))))
+		((> x1 x2)
+		 (intersection-set (cdr set1) set2))
+		((< x2 x1)
+		 (intersection-set set1 (cdr set2)))))))
+#+END_SRC
+
+sets as binary trees:
+#+BEGIN_SRC scheme
+  (define (entry tree) (car tree))
+  (define (left-branch tree) (cadr tree))
+  (define (right-branch tree) (caddr tree))
+  (define (make-tree entry left right)
+    (list entry left right))
+
+  (define (element-of-set? x set)
+    (cond ((null? set) false)
+	  ((= x (entry set)) true)
+	  ((< x (entry set))
+	   (element-of-set? x (left-branch set)))
+	  ((> x (entry set))
+	   (element-of-set? x (right-branch set)))))
+  (define (adjoin-set x set)
+    (cond ((null? set) (make-tree x '() '()))
+	  ((< x (entry set))
+	   (make-tree (entry set)
+		      (adjoin-set x (left-branch set))
+		      (right-branch set)))
+	  ((> x (entry set))
+	   (make-tree (entry set)
+		      (left-branch set)
+		      (adjoin-set x (right-branch set))))))
+#+END_SRC