|
@@ -0,0 +1,155 @@
|
|
|
|
+* 2.3 Symbolic Data
|
|
|
|
+
|
|
|
|
+all the previous worked down to basically numbers at the bottom
|
|
|
|
+
|
|
|
|
+we are now going to use arbitrary symbols
|
|
|
|
+
|
|
|
|
+** 2.3.1 Quotation
|
|
|
|
+
|
|
|
|
+ - quote :: the power over an object to manipulate it as a symbol
|
|
|
|
+
|
|
|
|
+if we want to construct the list (a b), we need more than just list
|
|
|
|
+(list a b) combines the values held by those variables
|
|
|
|
+
|
|
|
|
+quotation marks denote what somebody else might say
|
|
|
|
+
|
|
|
|
+#+BEGIN_SRC scheme
|
|
|
|
+ (define a 1)
|
|
|
|
+ (define b 2)
|
|
|
|
+ (list a b)
|
|
|
|
+ (list 'a 'b)
|
|
|
|
+ (list a 'b)
|
|
|
|
+ (car '(a b c))
|
|
|
|
+ (cdr '(a b c))
|
|
|
|
+ '()
|
|
|
|
+#+END_SRC
|
|
|
|
+
|
|
|
|
+with '() we can represent nil which never worked on my scheme anyway
|
|
|
|
+
|
|
|
|
+#+BEGIN_SRC scheme
|
|
|
|
+ (define (memq item x)
|
|
|
|
+ (cond ((null? x) false)
|
|
|
|
+ ((eq? item (car x)) x)
|
|
|
|
+ (else (memq item (cdr x)))))
|
|
|
|
+ (memq 'paul '(john george paul ringo))
|
|
|
|
+#+END_SRC
|
|
|
|
+
|
|
|
|
+** 2.3.2 Example: Symbolic Differentiation
|
|
|
|
+#+BEGIN_SRC scheme
|
|
|
|
+ (define (deriv exp var)
|
|
|
|
+ (cond ((number? exp) 0)
|
|
|
|
+ ((variable? exp)
|
|
|
|
+ (if (same-variable? exp var) 1 0))
|
|
|
|
+ ((sum? exp)
|
|
|
|
+ (make-sum (deriv (addend exp) var)
|
|
|
|
+ (deriv (augend exp) var)))
|
|
|
|
+ ((product? exp)
|
|
|
|
+ (make-sum
|
|
|
|
+ (make-product (multiplier exp)
|
|
|
|
+ (deriv (multiplicand exp) var))
|
|
|
|
+ (make-product (deriv (multiplier exp) var)
|
|
|
|
+ (multiplicand exp))))
|
|
|
|
+ (else
|
|
|
|
+ (error "unknown expression type -- DERIV" exp))))
|
|
|
|
+
|
|
|
|
+ ;;;;;;;; to define below this magnificantly high abstration level ;;;;;;;;;
|
|
|
|
+
|
|
|
|
+ (define (variable? x) (symbol? x))
|
|
|
|
+ (define (same-variable? v1 v2)
|
|
|
|
+ (and (variable? v1) (variable? v2) (eq? v1 v2)))
|
|
|
|
+ (define (make-sum a1 a2)
|
|
|
|
+ (cond ((=number? a1 0) a2)
|
|
|
|
+ ((=number? a2 0) a1)
|
|
|
|
+ ((and (number? a1) (number? a2)) (+ a1 a2))
|
|
|
|
+ (else
|
|
|
|
+ (list '+ a1 a2))))
|
|
|
|
+ (define (=number? exp num)
|
|
|
|
+ (and (number? exp) (= exp num)))
|
|
|
|
+ (define (make-product m1 m2)
|
|
|
|
+ (cond ((or (=number? m1 0) (=number? m2 0)) 0)
|
|
|
|
+ ((=number? m1 1) m2)
|
|
|
|
+ ((=number? m2 1) m1)
|
|
|
|
+ ((and (number? m1) (number? m2)) (* m1 m2))
|
|
|
|
+ (else (list '* m1 m2))))
|
|
|
|
+ (define (sum? x)
|
|
|
|
+ (and (pair? x) (eq? (car x) '+)))
|
|
|
|
+ (define (addend s) (cadr s))
|
|
|
|
+ (define (augend s) (caddr s))
|
|
|
|
+ (define (product? x)
|
|
|
|
+ (and (pair? x) (eq? (car x) '*)))
|
|
|
|
+ (define (multiplier p) (cadr p))
|
|
|
|
+ (define (multiplicand p) (caddr p))
|
|
|
|
+
|
|
|
|
+ (deriv '(* (* x y) (+ x 3)) 'x)
|
|
|
|
+#+END_SRC
|
|
|
|
+
|
|
|
|
+** 2.3.3 Example: Representing Sets
|
|
|
|
+sets as unordered lists:
|
|
|
|
+#+BEGIN_SRC scheme
|
|
|
|
+ (define (element-of-set? x set)
|
|
|
|
+ (cond ((null? set) false)
|
|
|
|
+ ((equal? x (car set)) true)
|
|
|
|
+ (else (element-of-set? x (cdr set)))))
|
|
|
|
+ (define (adjoin-set x set)
|
|
|
|
+ (if (element-of-set? x set)
|
|
|
|
+ set
|
|
|
|
+ (cons x set)))
|
|
|
|
+ (define (intersection-set set1 set2)
|
|
|
|
+ (cond ((or (null? set1) (null? set2)) '())
|
|
|
|
+ ((element-of-set? (car set1) set2)
|
|
|
|
+ (cons (car set1)
|
|
|
|
+ (intersection-set (cdr set1) set2)))
|
|
|
|
+ (else (intersection-set (cdr set1) set2))))
|
|
|
|
+#+END_SRC
|
|
|
|
+
|
|
|
|
+sets as ordered lists:
|
|
|
|
+#+BEGIN_SRC scheme
|
|
|
|
+ (define (element-of-set? x set)
|
|
|
|
+ (cond ((null? set) false)
|
|
|
|
+ ((= x (car set)) true)
|
|
|
|
+ ((< x (car set)) false)
|
|
|
|
+ (else (element-of-set? x (cdr set)))))
|
|
|
|
+#+END_SRC
|
|
|
|
+
|
|
|
|
+more quickly (efficiently):
|
|
|
|
+#+BEGIN_SRC scheme
|
|
|
|
+ (define (intersection-set set1 set2)
|
|
|
|
+ (if (or (null? set1) (null? set2))
|
|
|
|
+ '()
|
|
|
|
+ (let ((x1 (car set1)) (x2 (car set2)))
|
|
|
|
+ (cond ((= x1 x2)
|
|
|
|
+ (cons x1
|
|
|
|
+ (intersection-set (cdr set1)
|
|
|
|
+ (cdr set2))))
|
|
|
|
+ ((> x1 x2)
|
|
|
|
+ (intersection-set (cdr set1) set2))
|
|
|
|
+ ((< x2 x1)
|
|
|
|
+ (intersection-set set1 (cdr set2)))))))
|
|
|
|
+#+END_SRC
|
|
|
|
+
|
|
|
|
+sets as binary trees:
|
|
|
|
+#+BEGIN_SRC scheme
|
|
|
|
+ (define (entry tree) (car tree))
|
|
|
|
+ (define (left-branch tree) (cadr tree))
|
|
|
|
+ (define (right-branch tree) (caddr tree))
|
|
|
|
+ (define (make-tree entry left right)
|
|
|
|
+ (list entry left right))
|
|
|
|
+
|
|
|
|
+ (define (element-of-set? x set)
|
|
|
|
+ (cond ((null? set) false)
|
|
|
|
+ ((= x (entry set)) true)
|
|
|
|
+ ((< x (entry set))
|
|
|
|
+ (element-of-set? x (left-branch set)))
|
|
|
|
+ ((> x (entry set))
|
|
|
|
+ (element-of-set? x (right-branch set)))))
|
|
|
|
+ (define (adjoin-set x set)
|
|
|
|
+ (cond ((null? set) (make-tree x '() '()))
|
|
|
|
+ ((< x (entry set))
|
|
|
|
+ (make-tree (entry set)
|
|
|
|
+ (adjoin-set x (left-branch set))
|
|
|
|
+ (right-branch set)))
|
|
|
|
+ ((> x (entry set))
|
|
|
|
+ (make-tree (entry set)
|
|
|
|
+ (left-branch set)
|
|
|
|
+ (adjoin-set x (right-branch set))))))
|
|
|
|
+#+END_SRC
|